Low energy error correction of NAND Flash memory through soft-decision decoding
نویسندگان
چکیده
The raw bit error rate of NAND Flash memory increases as the semiconductor geometry shrinks for high density, which makes it very necessary to employ a very strong error correction circuit. The soft-decision-based error correction algorithms, such as low-density parity-check (LDPC) codes, can enhance the error correction capability without increasing the number of parity bits. However, soft-decision error correction schemes need multiple precision data, which obviously increases the energy consumption in NAND Flash memory for more sensing operations as well as more data output. We examine the energy consumption of a NAND Flash memory system with an LDPC code-based soft-decision error correction algorithm. The energy consumed at multiple-precision NAND Flash memory as well as the LDPC decoder is considered. The output precision employed is 1.0, 1.4, 1.7, and 2.0 bits per data. In addition, we also propose an LDPC decoder-assisted precision selection method that needs virtually no overhead. The experiment was conducted with 32-nm 128-Gbit 2-bit multi-level cell NAND Flash memory and a 65-nm LDPC decoding VLSI.
منابع مشابه
Combating Bit Errors From Stuck Cells in Flash Memory Using Novel Information Theory Techniques
Low-density parity-check (LDPC) codes have been successfully deployed in NAND Flash memory based Solid State Drives (SSDs). As Flash memory scales, and has now advanced from planar architectures to three-dimensional ones, defects in the form of stuck cells have increased. Stuck cells are more difficult to correct using LDPC codes because they typically masquerade as reliable bits, but their per...
متن کاملPolar-Coded Forward Error Correction for MLC NAND Flash Memory Polar FEC for NAND Flash Memory
With the ever-growing storage density, high-speed, and low-cost data access, flash memory has inevitably become popular. Multi-level cell (MLC) NAND flash memory, which can well balance the data density and memory stability, has occupied the largest market share of flash memory. With the aggressive memory scaling, however, the reliability decays sharply owing to multiple interferences. Therefor...
متن کاملReducing latency overhead caused by using LDPC codes in NAND flash memory
Semiconductor technology scaling makes NAND flash memory subject to continuous raw storage reliability degradation, leading to the demand for more and more powerful error correction codes. This inevitable trend makes conventional BCH code increasingly inadequate, and iterative coding solutions such as low-density parity-check (LDPC) codes become very natural alternative options. However, fine-g...
متن کاملA mathematical approach to NAND flash-memory descrambling and decoding
New mathematical techniques for analysis of raw dumps of NAND flash memory were developed. These techniques are aimed at detecting, by analysis of the raw NAND flash dump only, the use of LFSR-based scrambling and the use of a binary cyclic code for errorcorrection. If detected, parameter values for both LFSR and cyclic error-correcting code are determined simultaneously. These can subsequently...
متن کاملError Correction Codes and Signal Processing in Flash Memory
This chapter is to introduce NAND flash channel model, error correction codes (ECC) and signal processing techniques in flash memory. There are several kinds of noise sources in flash memory, such as random-telegraph noise, retention process, inter-cell interference, background pattern noise, and read/program disturb, etc. Such noise sources reduce the storage reliability of flash memory signif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012